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LE’lTER TO THE EDITOR 
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Department of Physics, University of California, Santa Cruz, CA 95064, USA 

Received 16 March 1987, in final form 20 May 1987 

Abstract. We compute numerically the asphericity of (i) percolation clusters at the percola- 
tion concentration on a square lattice, and (ii) Ising clusters at the critical temperature of 
an king model, also on a square lattice. These results are compared with various analytical 
calculations. For the percolation problem, we also compute the distribution of asphericities 
among different clusters. Finally, we show that the lattice itself does not give rise to any 
anisotropy. 

While the distribution of sizes of percolation clusters at the percolation concentration 
p c  has been studied for some time (Stauffer 1979, 1985), it has only recently been 
emphasised that the clusters are not spherical (Family et a1 1985). A convenient 
measure of cluster shapes, known as the asphericity, has been given by Rudnick and 
Gaspari (1986) and Aronovitz and Nelson (1986). This is useful because it can be 
calculated analytically both for random walks (Rudnick and Gaspari 1986, Gaspari et 
a1 1987, Aronovitz and Nelson 1986) and within an E expansion, where E = 6 - d and 
d is the dimensionality, for the percolation problem (Aronovitz and Stephen 1987). 
While the pioneering work of Family et a1 (1985) showed that percolation clusters are 
not spherical, they did not explicitly calculate the asphericity parameter so one cannot 
directly compare their results with the E expansion results of Aronovitz and Stephen 
(1987). We have therefore computed the asphericity for percolation clusters on a 
square lattice. Given the large extrapolation from d = 6  down to d =2,  our results 
compare well with the &-expansion predictions. We also obtain the distribution of 
asphericities, finding that a spherical shape is the most probable one but that the 
distribution has a finite width even as the cluster size tends toward infinity. One can 
also discuss clusters in the two-dimensional Ising model (e.g. Cambier and Nauenberg 
1986) which percolate at the critical temperature, T, (Coniglio and Klein 1980). We 
have therefore looked at the asphericity of these Ising clusters and find that it is almost 
identical to our result for percolation clusters. 

First of all, we define the asphericity parameter of Rudnick and Gaspari (1986) 
and Aronovitz and Nelson (1986). One computes the radius of gyration tensor R:, 
defined for a cluster of N sites by 

1 N  
N a = i  

R i = -  (xF-fi)(xj”-fj) (1) 

where fi is the ith coordinate of the centre of mass of the cluster, and (Y = 1, .  . . , N 
denotes a particular site in the cluster. The tensor R ;  is diagonalised to obtain its 
eigenvalues A i ,  i = 1,. . . , d. For d = 2  to which we specialise from now on, the 
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asphericity parameter A2, is defined to be (Rudnick and Gaspari 1986, Aronowitz and 
Nelson 1986) 

Note that this is called A2 in Rudnick and Gaspari (1986). The averages in (2) are 
over different clusters. In practice, we looked at clusters in a range of sizes to eliminate 
corrections to scaling which occur for small clusters. At the percolation concentration 
there are arbitrarily large clusters in an infinite system. Obviously a simulation cannot 
contain very large sizes but we were able to study, without difficulty, a sufficiently 
large range of sizes where corrections to scaling are negligible. It is also of interest to 
consider the asphericity of a single cluster, i.e. 

from which the distribution P ( A 2 )  and average (A2) are obtained by sampling many 
clusters. Obviously A2 = 0 for a spherical (circular) cluster and A? = 1 for a cluster 
made of a single straight rod. 

A simple way to generate percolation clusters was proposed by Alexandrowicz 
(1980). This was later modified by Grassberger (1983) and used in the work of Family 
et a1 (1985). One starts with a seed particle (occupied site) on the lattice. One of its 
nearest neighbours (perimeter sites) is chosen randomly. This site is occupied, and 
becomes part of the growing cluster, with probability p and otherwise is discarded 
and not considered again as a possible perimeter site. This process continues until 
either the number of perimeter sites becomes zero, in which case the radius of gyration 
tensor is computed, or the occupied sites go outside the bounds of the array used to 
store them, in which case this cluster is discarded. We generated 16 240 clusters of up 
to 4096 sites by this method at p =p,=O.5928. This took 26 h of computer time on a 
Sun 3/50 workstation. In this range no clusters had to be discarded. For each factor 
of two in size we computed (A2), A, and u(A2) ,  the standard deviation of A2. The 
results are shown in figure 1 for sites N between 5 and 4096. Apart from very small 
sizes, the results are independent of size and give, for 256< N <4096, 

(A2) = 0.258 * 0.006 

A, = 0.325 f 0.006. 

(percolation) 
(4) 

The distribution P ( A 2 ) ,  obtained by averaging over 8892 clusters of sizes between 129 
and 4096 sites, is shown in figure 2. Because the mean and standard deviation appear 
to have settled down to their asymptotic values for N + CO, as shown in figure 1, we 
expect the whole distribution to be unchanged from figure 2 in the thermodynamic 
limit. Notice that the most probable result is A2=0 ,  corresponding to a spherical 
shape, but that the distribution has a finite width as N + CO. 

For d = 2, Aronowitz and Stephen (1987) find A, = 0.286, to zeroth order in E and 
0.374 to first order. Our result lies in between these two values, which is reasonable 
considering that the E expansion generally oscillates (Lipatov 1977, BrCzin er a1 1977). 
It would be interesting to see how the &-expansion results are approached in higher 
dimensions. 

We have also studied the shapes of Ising clusters on a square lattice at the critical 
temperature. A standard Monte Carlo simulation (see, e.g., Binder 1984) was performed 
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Figure 1. A plot of (A2) (O) ,  A, (0) and u(A2)  (A)  for 5 6  N S4096 for the percolation 
problem on a square lattice at concentration p = pc  = 0.5928. Results for each factor of 
two in size (e.g. 5 S N 8, 9 S N S 16, etc) are lumped together. 
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Figure 2. The probability distribution P ( A 2 )  for percolation clusters on a square lattice 
( (A2)  = 0.258). 8892 clusters of size 129 < N <4096 have been averaged over. 

for L x L lattices of sizes L = 60 and 120, with periodic boundary conditions at the 
critical temperature T,, which is 2.269 in units of the nearest-neighbour interaction. 
A cluster is a set of sites containing up spins, such that one can go from any site in 
the cluster to any other site by nearest-neighbour steps, staying always on up-spin 
sites. Because the model is symmetrical between up and down spins, one could equally 
well define the clusters in terms of down spins. Clusters were identified by the algorithm 
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of Hoshen and Kopelman (1976). To obtain good statistics it was necessary to run 
the simulation for many times the longest relaxation time. Because of critical slowing 
down, relaxation times are very long at T, and diverge for an infinite system. We ran 
the simulation for 120 000 steps per spin after an equilibrium period of 20 000 steps. 

Results for A, and (A2)  for 5 < N < 4096 are shown in figure 3.  Apart from small 
sizes (and also very large sizes comparable with the system size where finite-size effects 
play a role) the results do not depend much on size and we find 
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(A, )  = 0.264 f 0.002 

A, = 0.328 f 0.002. 

(Ising) 

These results are almost the same as those of the percolation problem given in (4). 
Within our errors they could be identical but there is no reason to expect this since 
the percolation and Ising problems are in different universality classes. We are not 
aware of any &-expansion calculations for the shape of Ising clusters. It is noticeable 
that corrections to the infinite-N results at small size are larger for the percolation 
problem than for the Ising model. 

U 

U 0 
U 

O B 0  

0 
0.30 

0 
0 

0 
0 

Finally, we compare our results with calculations on random walks. For closed 
walks, which are more appropriate than open walks for comparison with Ising or 
percolation clusters, Gaspari et a1 (1987) find 

A, = 0.333 (6a) 

which is remarkably close to ur values given in (4) and (5) .  They can only calculate 
(A,) in a l /d  expansion where d is the dimension, with the result 

0.291 
( A 2 ) =  ((0.200). (closed walks) 
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The first figure is obtained by including the l /d  correction while the figure in brackets 
is the zeroth-order approximation. The numerical results of Bishop and Saltiel (1986) 
are A, = 0.321 f0.035. 

After this work was completed we received a preprint from Straley and Stephen 
( 1987) who evaluated A, for percolation by high-temperature series expansions for 
clusters of up to fifteen sites, obtaining A, = 0.38 f 0.01, substantially higher than our 
value of 0.325 f 0.006. In fact, Straley and Stephen (1987) note that their estimate may 
be too high, because it is based on small cluster sizes. Our results for N = 15 are 
indeed consistent with their value (see figure 1) but give our lower value for larger 
clusters. 

Finally, for the percolation problem, we have examined whether the square lattice 
itself gives rise to anisotropy. Since the lattice has fourfold, rather than fully isotropic, 
symmetry, we looked for a measure of fourfold anisotropy. For cluster of N sites we 
computed 

N N - 1  

A4= a = l  r:cos46,( a = l  r.) 

where 

r , = ( ~ , - R ) ~ + ( y , - ~ ) ~  

r, cos 6, = x u  - 2  

(7) 

r, sin 6, = y,  - J  

and averaged this over many clusters to obtain (A4). Clearly -1 s (A4) s 1 and (A4) = 0 
if there is no fourfold anisotropy. Figure 4 shows our results for 3200 clusters of size 
between N = 5 and 4096. Apart from the smallest sizes which appear to show a minor 
effect just outside the error bars we find that (A4) is clearly zero. Hence large clusters, 
are, on average, isotropic, as expected, at the critical point. 

We conclude that all closed fractal clusters studied in two dimensions have very 
similar sphericity with A, = 0.33 and (A2) = 0.26. 

We would like to thank G Gaspari and M Nauenberg for helpful discussions. The 
work of APY is partially supported by NSF grant DMR 8419536. 
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4096 for the percolation problem on a square lattice Figure 4. A plot of (A4) for 5 s N 
at p = p c .  
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